Definición de isómero
Se llaman isómeros a aquellas moléculas que poseen la misma fórmula molecular pero diferente estructura. Se clasifican en isómeros estructurales y estereoisómeros.
Isómeros estructurales
Los isómeros estructurales difieren en la forma de unir los átomos y a su vez se clasifican en isómeros de cadena de posición y de función.
Isómeros estructurales
Definición de isómeros
Se llaman isómeros a moléculas que tienen la misma formula molecular pero distinta estructura. Se clasifican en isómeros de cadena, posición y función.
Isómeros de cadena

Definición de isómero
Se llaman isómeros a aquellas moléculas que poseen la misma fórmula molecular pero diferente estructura. Se clasifican en isómeros estructurales y estereoisómeros.
Isómeros estructurales
Los isómeros estructurales difieren en la forma de unir los átomos y a su vez se clasifican en isómeros de cadena de posición y de función.
Isómeros estructurales
Definición de isómeros
Se llaman isómeros a moléculas que tienen la misma formula molecular pero distinta estructura. Se clasifican en isómeros de cadena, posición y función.
Isómeros de cadena

Se distinguen por la diferente estructura de las cadenas carbonadas. Un ejemplo de este tipo de isómeros son el butano y el 2-metilpropano.
Isómeros de posición

El grupo funcional ocupa una posición diferente en cada isómero. El 2-pentanol y el 3-pentanol son isómeros de posición.
Isómeros de función

El grupo funcional es diferente. El 2-butanol y el dietil éter presentan la misma fórmula molecular, pero pertenecen a familias diferentes -alcohol y éter- por ello se clasifican como isómeros de función.
Isómeros geométricos (cis/trans)
Isomería cis/trans
Son compuestos que difieren en la disposición espacial de sus grupos. Se llaman cis los isómeros geométricos que tienen los grupos al mismo lado y trans los que lo tienen a lados opuestos.
cis y trans-2-Buteno
Isómeros cis y trans del 2-Buteno

Modelos moleculares del cis y trans-2-buteno.

is y trans-1,2-Dimetilciclopentano
Isómeros cis y trans del 1,2-Dimetilciclopentano

Modelos moleculares del cis y trans-1,2-Dimetilciclopentano.

Estereoisómeros
Los estereoisómeros tienen todos los enlaces idénticos y se diferencian por la disposición espacial de los grupos. Se clasifican en isómeros cis - trans o geométricos, enantiómeros y diastereoisómeros.
Diastereroisómeros
Definición de Diastereoisómeros
Son moléculas que se diferencian por la disposición espacial de los grupos, pero que no son imágenes especulares. Un tipo de diastereoisómeros son los isómeros geométricos (alquenos cis y trans). Para que dos moléculas sean diastereoisómeros es necesario que al menos tengan dos centros quirales. En uno de los centros los sustituyentes están dispuestos igual en ambas moléculas y en el otro deben cambiar.
de diastereoisómeros


Centro quiral o asimétrico
Se llama centro quiral o asimétrico a un átomo unido a cuatro sustituyentes diferentes. Una molécula que posee un centro quiral tiene una imagen especular no superponible con ella, denominada enantiómero.
Enantiómeros
Definición de Enantiómeros
Los enantiómeros son imágenes especulares no superponibles. Se caracterizan por poseer un átomo unido a cuatro grupos distintos llamado asimétrico o quiral.
Nomenclatura de enantiómeros
Reglas para nombrar enantiómeros
Para dar notación R/S a un centro quiral es necesario asignar prioridades a los sustituyentes mediante las siguientes reglas:
Regla 1
Las prioridades de los átomos unidos al quiral se dan por números atómicos. En el caso de isótopos, tiene prioridad el de mayor masa atómica.

Las prioridades se dan por orden de número atómico de los átomos unidos directamente al carbono asimétrico (dibujados en rojo)
Regla 2
Cuando dos o más sustituyentes unidos al centro quiral tengan la misma prioridad, se continua comparando las cadenas átomo a átomo hasta encontrar un punto de diferencia.
Regla 3

Los enlaces dobles y triples se desdoblan considerándolos como si fueran enlaces sencillos.

Para asignar notación R/S seguimos el orden de prioridades a, b, c de los sustituyentes. Si esta sucesión se realiza en el sentido de las agujas del reloj se dice que el centro es R (rectus, latín derecha). Si se sigue el sentido contrario a las agujas al recorrer las prioridades a, b, c se dice que es S (sinester, latín izquierda). Esta regla sólo es válida cuando el grupo d está hacia el fondo del plano (enlace a trazos), si d sale hacia nosotros (cuña) la notación es la contraria (R giro a la izquierda, S giro a la derecha).

Ejemplo de enantiómeros: (R) y (S)-1-Bromo-1-cloroetano
En los modelos moleculares puede verse que las dos moléculas son distintas, no se superponen.


La presencia de un carbono asimétrico (con sustituyentes distintos: metilo, hidrógeno, cloro y bromo)
hace posible que la molécula y su imagen especular sean distintas.
Ejemplo de enantiómeros: (R) y (S)-Alanina
La (R) y (S)-Alanina son otro ejemplo de enantiómeros


Moléculas con varios centros quirales
Máximo número de estereoisómeos
El número máximo de estereoisómeros que presenta una molécula puede calcularse con la fórmula (2n), donde n representa el número de carbonos asimétricos. Así una molécula con 2 centros quirales presenta 4 estereoisómeros.
Estereoisómeros de 2-Bromo-3-clorobutano

Estereoisómeros de 1,2-Dimetilciclohexano

Actividad óptica
Los enantiómeros poseen casi todas las propiedades físicas idénticas, con la excepción de la actividad óptica. Uno de los enantiómeros produce rotación de la luz polarizada a la derecha (dextrógiro) y el otro rota la luz polarizada a la izquierda (levógiro).
Actividad Óptica
Los enantiómeros y la actividad óptica
Los enantiómeros presentan propiedades físicas idénticas, con la excepción de su comportamiento frente a la luz polarizada. Un enantiómero gira el plano de la luz polarizada en el sentido de las agujas del reloj, es dextrógiro (+). El otro enantiómero provoca rotación en el sentido contrario al de las agujas del reloj, es levógiro (-). Este fenómeno asociado a sustancias quirales se conoce como actividad óptica.
Medida de la rotación de la luz
La rotación óptica se mide con un polarímetro que consta de de una fuente de luz, un polarizador del que sale luz oscilando en un único plano, la cubeta que contiene el enantiómero y un analizador que permite medir la rotación de la luz.

VERIFICA TU APRENDIZAJE